The ship designers seek to create their geometrical 3D ship models to achieve sustainability targets such as reducing carbon dioxide and being safer. This paper aims to provide a powerful and robust tool for the optimal design of container ship geometry in order to reduce the energy required for propulsion which in turn reduces greenhouse gas emissions. In this paper, the Korea Research Institute of Ships and Ocean (KRISO) Container Ship (KCS) model is considered. The data set of the 3D ship container KCS model’s total resistance is generated by employing the statistical Holtrop-Menan method at different lengths, breadths, draft ranges, and speeds. The collected total resistance data set is trained through Artificial Neural Network (ANN) techniques by using MATLAB-ANN code. The output intelligent data are utilized for creating a General Predictive Smart Model (GPSM). The GPSM is used for creating Graphical User Interface (GUI) software to draw the optimum 3D container model at a specified speed automatically which achieves the lowest total resistance. The developed GUI is observed to provide an automatic determination of the optimal ship geometry.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Optimal Design of Container Ships Geometry Based on Artificial Intelligence Techniques to Reduce Greenhouse Gases Emissions


    Weitere Titelangaben:

    Earth & Environmental sci. Library


    Beteiligte:
    Negm, Abdelazim M. (Herausgeber:in) / Rizk, Rawya Y. (Herausgeber:in) / Abdel-Kader, Rehab F. (Herausgeber:in) / Ahmed, Asmaa (Herausgeber:in) / Hassan, Hussien M. (Autor:in) / Elsakka, Mohamed M. (Autor:in) / Refaat, Ahmed (Autor:in) / Amer, Ahmed E. (Autor:in) / Rizk, Rawya Y. (Autor:in)

    Kongress:

    International Work-Conference on Bioinformatics and Biomedical Engineering ; 2023 ; Meloneras, Gran Canaria, Spain July 12, 2023 - July 14, 2023



    Erscheinungsdatum :

    17.01.2024


    Format / Umfang :

    15 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Crowdsourcing and monetization as a strategy to reduce vehicular greenhouse gases emissions

    Melo, Wilson / Nascimento, Paulo / Gomes, Kaua et al. | IEEE | 2022


    TECHNIQUES TO SYNTHESIZE GREENHOUSE GASES

    MOTEY ALEXANDER | Europäisches Patentamt | 2024

    Freier Zugriff

    DESIGN FOR OPTIMAL HYDRODYNAMIC OPERATION OF LARGE CONTAINER SHIPS

    Hearn, G. E. / Wright, P. N. H. / Royal Institution of Naval Architects | British Library Conference Proceedings | 1999


    TECHNICAL AND OPERATIONAL MEASURES TO REDUCE GREENHOUSE GAS EMISSIONS AND IMPROVE THE ENVIRONMENTAL AND ENERGY EFFICIENCY OF SHIPS

    Oleg ONISHCHENKO / Volodymyr GOLIKOV / Oleksiy MELNYK et al. | DOAJ | 2022

    Freier Zugriff

    10 Key Strategies To Reduce Transportation Greenhouse Gases (GHG)

    Burbank, C.J. / Institute of Transportation Engineers | British Library Conference Proceedings | 2009