The modern manufacturing sector encounters substantial financial setbacks due to unforeseen equipment downtime, hence mandating the implementation of more proactive maintenance strategies. The present study explores the potential of utilising AI-driven thermal imaging to monitor tool conditions in the context of predictive maintenance. In the context of the milling process, infrared camera technology was implemented to observe and assess tool wear and surface finishes. The analysis of key features derived from thermal imaging was conducted using two distinct methodologies: statistical analysis and polynomial feature extraction. Subsequently, a neural network was trained to categorise tools as either “fresh” or “worn”. This study provides a comparative examination of feature extraction techniques, focusing on the significant contributions of neural network and thermal imaging in enhancing predictive maintenance in the manufacturing sector. The study demonstrates that both statistical and polynomial feature extraction methods are effective for tool condition monitoring, with statistical features showing marginally higher success rates across various regions of interest, underscoring their reliability in predictive maintenance applications.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Neural Network Approach to Tool Wear Detection via Infrared Sensor Monitoring


    Weitere Titelangaben:

    Lect. Notes in Networks, Syst.


    Beteiligte:
    Abdul Majeed, Anwar P.P. (Herausgeber:in) / Yap, Eng Hwa (Herausgeber:in) / Liu, Pengcheng (Herausgeber:in) / Huang, Xiaowei (Herausgeber:in) / Nguyen, Anh (Herausgeber:in) / Chen, Wei (Herausgeber:in) / Kim, Ue-Hwan (Herausgeber:in) / Xia, Jiahua (Autor:in) / Song, Rui (Autor:in) / Teng, Lavianna (Autor:in) ... [mehr]

    Kongress:

    International Conference on Robot Intelligence Technology and Applications ; 2023 ; Taicang December 06, 2023 - December 08, 2023



    Erscheinungsdatum :

    22.11.2024


    Format / Umfang :

    9 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Application of Neural Networks in Multiple Sensor Fusion for On-Line Tool Wear Monitoring

    Jia, K. / Zheng, L. / Luo, Z. et al. | British Library Conference Proceedings | 1994


    Sensor fusion via neural networks for estimation of tool wear

    Zhu, M. / Cai, Y. | British Library Online Contents | 1997


    State recognition of tool wear based on wavelet neural network

    Peng, N. / Xin, C. / Tao, X. et al. | British Library Online Contents | 2011


    SENSOR SYSTEM FOR MONITORING TIRE WEAR

    PULFORD CARL TREVOR ROSS / LIN CHENG-HSIUNG | Europäisches Patentamt | 2019

    Freier Zugriff

    SENSOR SYSTEM FOR MONITORING TIRE WEAR

    PULFORD CARL TREVOR ROSS / LIN CHENG-HSIUNG | Europäisches Patentamt | 2022

    Freier Zugriff