Abstract The lane-changing model is a hot spot in the field of traffic research, and there are already a lot of free lane-changing model established mathematical statistical methods or machine learning algorithm. However, these models don’t consider the driver’s driving style to the free lane-changing, and the accuracy of these models is low. This paper considers the driver’s driving style and proposes a new free lane-changing model based on machine learning. The new model splits the sample data into three driving styles: cautious, stable and radical. This paper selects the most effective multilayer perceptron model by comparing different machine learning methods based on the NGSIM trajectory data. In the analysis of the final accuracy of this paper, it can be seen that the new model has a great improvement in accuracy.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A New Lane-Changing Model with Consideration of Driving Style


    Beteiligte:
    Ren, Guoqing (Autor:in) / Zhang, Yong (Autor:in) / Liu, Hao (Autor:in) / Zhang, Ke (Autor:in) / Hu, Yongli (Autor:in)


    Erscheinungsdatum :

    23.03.2019


    Format / Umfang :

    9 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    XGBoost Lane-Changing Decision Model Considering Driving Style

    Zhao, Yang / Li, Yi / Cheng, Pengle | Springer Verlag | 2024


    Stackelberg-Game-Based Vehicle Lane-Changing Model Considering Driving Style

    Du, Changqing / Wu, Dongmei / Liang, Qingyang et al. | SAE Technical Papers | 2022


    Stackelberg-Game-Based Vehicle Lane-Changing Model Considering Driving Style

    Wu, Dongmei / Liang, Qingyang / Du, Changqing et al. | British Library Conference Proceedings | 2022


    A Lane-Changing Safety Warning Model Considering Driving Style Characteristics

    Zu, Xinquan / Xu, Liangjie / Li, Jingyi | Springer Verlag | 2025


    Research on lane-changing decision model with driving style based on XGBoost

    Zhang, Shuao / Shao, Xiaoming / Wang, Jiangfeng | SPIE | 2024