A vehicular ad hoc network (VANET) can help in reducing accidents by sending safety messages to the vehicles. High mobility and high dynamics of vehicles give rise to many challenges in VANET. Machine learning is a technique of artificial intelligence that can provide a splendid set of tools for handling data. A concise introduction of the significant concepts of machine learning and VANET. Our main concern is to implement VANET using different machine learning techniques. The proposed scheme uses simulated data that is collected and based on implementation is done through a random forest classifier.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Traffic Accident Detection Using Machine Learning Algorithms


    Weitere Titelangaben:

    Advs in Intelligent Syst., Computing


    Beteiligte:
    Poonia, Ramesh Chandra (Herausgeber:in) / Singh, Vijander (Herausgeber:in) / Singh Jat, Dharm (Herausgeber:in) / Diván, Mario José (Herausgeber:in) / Khan, Mohammed S. (Herausgeber:in) / Sharma, Swati (Autor:in) / Harit, Sandeep (Autor:in) / Kaur, Jasleen (Autor:in)


    Erscheinungsdatum :

    04.01.2022


    Format / Umfang :

    7 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Traffic Accident Risk Prediction Using Machine Learning

    Banerjee, Kakoli / Bali, Vikram / Sharma, Aanchal et al. | IEEE | 2022


    Traffic accident analysis using machine learning paradigms

    Chong, M. / Abraham, A. / Paprzycki, M. | Tema Archiv | 2005


    Traffic Accident Detection of Optimal Sensor Placement Algorithms

    Yang, M. / Wu, Q.S. / Bai, L. et al. | British Library Conference Proceedings | 2013


    Traffic Accident Detection of Optimal Sensor Placement Algorithms

    Yang, Mei ;Wu, Qi Sheng ;Bai, Lan | Trans Tech Publications | 2012


    Classification of Traffic Accident Severity Using Machine Learning Models

    Hamdan, Noura / Sipos, Tibor | Springer Verlag | 2025