To solve the problem of poor stability and accuracy of ship trajectory prediction by a single model, the LSTM ship trajectory prediction model is established to predict the ship AIS data, and the LSTM prediction error is corrected by GA-BP model. The experimental validation is carried out under three prediction models, which proves that the error correction model has smaller prediction error and better stability, and can accurately predict the ship trajectory, which is important for the avoidance and control of maritime traffic accidents.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Multidimensional Non-linear Ship Trajectory Prediction Based on LSTM Network Corrected by GA-BP


    Weitere Titelangaben:

    Lect. Notes Electrical Eng.


    Beteiligte:
    Jia, Yingmin (Herausgeber:in) / Zhang, Weicun (Herausgeber:in) / Fu, Yongling (Herausgeber:in) / Wang, Jiqiang (Herausgeber:in) / Wang, Xinyu (Autor:in) / Zhao, Wenyu (Autor:in) / Wang, Shuangxin (Autor:in) / Liu, Jingyi (Autor:in)

    Kongress:

    Chinese Intelligent Systems Conference ; 2023 ; Ningbo, China October 14, 2023 - October 15, 2023



    Erscheinungsdatum :

    08.10.2023


    Format / Umfang :

    6 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Ship Trajectory Prediction with Social History LSTM

    Zhao, Wenfeng / Zhang, Xudong | IEEE | 2023


    RF and LSTM combined ship trajectory prediction model

    ZHANG CONG / ZHU JISHUAI / DENG MEIHUAN et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Vehicle trajectory prediction based on LSTM network

    Yang, Zhifang / Liu, Dun / Ma, Li | IEEE | 2022


    Ship trajectory prediction method and system based on one-dimensional convolutional neural network and LSTM

    WANG BO / CUI BIN / MENG XIANGCHAO et al. | Europäisches Patentamt | 2021

    Freier Zugriff

    A Bi-directional LSTM Ship Trajectory Prediction Method based on Attention Mechanism

    Zhang, Sheng / Wang, Long / Zhu, Mingdong et al. | IEEE | 2021