Decarbonising the energy grid through renewable energy requires a grid firming technology to harmonize supply and demand. Hydrogen-fired gas turbine power plants offer a closed loop by burning green hydrogen produced with excess power from renewable energy. Conventional dry low NOx (DLN) combustors have been optimized for strict emission limits. A higher flame temperature of hydrogen drives higher NOx emissions and faster flame speed alters the combustion behavior significantly. Micromix combustion offers potential for low NOx emissions and optimized conditions for hydrogen combustion. Many small channels, so-called airgates, accelerate the airflow followed by a jet-in-crossflow injection of hydrogen. This leads to short-diffusion flames following the principle of maximized mixing intensity and minimized mixing scales. This paper shows the challenges and the potential of an economical micromix application for an aero-derivative industrial gas turbine with a high-pressure ratio. A technology transfer based on the micromix combustion research in the ENABLEH2 project is carried out. The driving parameter for ground use adaption is an increased fuel orifice diameter from 0.3 mm to 1.0 mm to reduce cost and complexity. Increasing the fuel supply mass flow leads to larger flames and higher emissions. The impact was studied through RANS simulation and trends for key design parameters were shown. Increased velocity in the airgates leads to a higher pressure drop and reduced emissions through faster mixing. Altering the penetration depth shows potential for emission reduction without compromising on pressure loss. Two improved designs are found, and their performance is discussed.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Scaling of an Aviation Hydrogen Micromix Injector Design for Industrial GT Combustion Applications


    Weitere Titelangaben:

    Aerotec. Missili Spaz.


    Beteiligte:

    Erschienen in:

    Aerotecnica Missili & Spazio ; 100 , 3 ; 239-251


    Erscheinungsdatum :

    2021-09-01


    Format / Umfang :

    13 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Design and Simulation of a Hydrogen Micromix Combustor

    Ghali, Pierre F. / Khandelwal, Bhupendra | AIAA | 2021


    LES OF JETS-IN-CROSS-FLOW AND APPLICATION TO THE ``MICROMIX'' HYDROGEN COMBUSTION

    Borner, S. / Funke, H. / Hendrick, P. et al. | British Library Conference Proceedings | 2009



    Hydrogen as a Fuel for Gas Turbine Engines with Novel Micromix Type Combustors

    Murthy, Priyadarshini / Khandelwal, Bhupendra / Sethi, Vishal et al. | AIAA | 2011