Transfer learning has been widely used in train bearing fault diagnosis. However, most existing methods are hindered under different working conditions in practical engineering applications. To fill this gap, this paper proposes an improved joint distribution adaptation algorithm (IJDA) based on Wasserstein distance. It first extracts multi-dimension features from time domain, frequency domain and entropy domain of raw signal to express the individual information of different fault types while reducing the number of input dimension. Meanwhile, by using Wasserstein distance as the metric of the K nearest neighbor algorithm, the distance between the source domain and target domain samples in the feature space is effectively pulled in, which improves the classification accuracy of JDA significantly. Experiments from two dataset with different probability distribution is designed, and results show that the effectiveness and robustness of the proposed method is superior to that of other state-of-art transfer learning methods.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Fault Diagnosis of Train Wheelset Bearings Based on Improved Joint Distribution Adaptation


    Weitere Titelangaben:

    Lect. Notes Electrical Eng.


    Beteiligte:
    Qin, Yong (Herausgeber:in) / Jia, Limin (Herausgeber:in) / Liang, Jianying (Herausgeber:in) / Liu, Zhigang (Herausgeber:in) / Diao, Lijun (Herausgeber:in) / An, Min (Herausgeber:in) / Ding, Yifan (Autor:in) / Xin, Ge (Autor:in) / Li, Zhe (Autor:in) / Zhong, Qitian (Autor:in)

    Kongress:

    International Conference on Electrical and Information Technologies for Rail Transportation ; 2021 October 21, 2021 - October 23, 2021



    Erscheinungsdatum :

    23.02.2022


    Format / Umfang :

    8 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Fault Diagnosis of Train Wheelset Bearings Based on Improved Joint Distribution Adaptation

    Ding, Yifan / Xin, Ge / Li, Zhe et al. | British Library Conference Proceedings | 2022




    Train wheelset size measuring box

    HUANG LEI | Europäisches Patentamt | 2021

    Freier Zugriff

    Reducing wheelset noice levels on modern train

    Demilly, Françoi / Pignerol, Christian | IuD Bahn | 2006