With the rapid advancement of autonomous vehicle technology, the development of efficient and stable trajectory tracking algorithms is crucial for achieving autonomous navigation. This paper addresses the issue of insufficient stability in traditional MPC for vehicle trajectory tracking and proposes a Q-learning-based multi-step model predictive control (QM-MPC) algorithm. This algorithm integrates the principles of model predictive control and reinforcement learning to accurately predict the future motion trajectory of autonomous vehicles using MPC. Furthermore, it utilizes Q-learning to perform multi-step deep predictions on the MPC-predicted motion trajectory results and propagates these deep predictions back to the current state. Through this approach, the objective cost function of MPC for autonomous vehicles is optimized, thereby further enhancing the efficiency and stability of trajectory tracking. Experimental results demonstrate that the proposed QM-MPC algorithm exhibits robust stability of Unmanned Ground Vehicle (UGV) in trajectory tracking. Specifically, it significantly enhances stability by 4.303%, 61.965%, 51.481% and 39.024% in path deviation, convergence time, yaw angle deviation and yaw rate, respectively. These findings underscore its considerable utility in autonomous vehicle navigation.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Q-Learning-Based Multi-step Model Predictive Control (QM-MPC) for UGVs Trajectory Tracking


    Weitere Titelangaben:

    Lect. Notes Electrical Eng.


    Beteiligte:
    Liu, Lianqing (Herausgeber:in) / Niu, Yifeng (Herausgeber:in) / Fu, Wenxing (Herausgeber:in) / Qu, Yi (Herausgeber:in) / Wang, Yuelong (Autor:in) / Wang, Songyan (Autor:in) / Chao, Tao (Autor:in)

    Kongress:

    International Conference on Autonomous Unmanned Systems ; 2024 ; Shenyang, China September 19, 2024 - September 21, 2024



    Erscheinungsdatum :

    22.03.2025


    Format / Umfang :

    10 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    UAV–UGVs cooperation: With a moving center based trajectory

    Aghaeeyan, A. / Abdollahi, F. / Talebi, H.A. | Tema Archiv | 2015


    Control of multiple UGVs

    Spofford, John R. / Munkeby, Steve H. | SPIE | 1996


    UAV Trajectory Tracking Based on Model Predictive Control

    Ma, Cheng / Wen, Xu / Yang, Jiadong et al. | Springer Verlag | 2025


    A Fuzzy Pure Pursuit for Autonomous UGVs Based on Model Predictive Control and Whole-Body Motion Control

    Yaoyu Sui / Zhong Yang / Haoze Zhuo et al. | DOAJ | 2024

    Freier Zugriff

    Trajectory Planning for Formation Variation of UGVs in Cluttered Environment

    Cheng, Jie / Chen, Ruishuang / Liang, Zhihui et al. | IEEE | 2023