This paper studies the modulation recognition of digital communication signals based on neural networks. The BP neural network ensembles method is put forward, which is a linear composition of the BP neural networks. The recognition accuracy of ten different modulation formats is given according to the model above in feature extraction. The approach presented is superior to a neural network algorithm in existing articles. The result shows that the method proposed can recognize complex signal modulation formats availably. The overall recognition accuracy is basically up to 100% in the sample data of this paper when the SNR is more than 8 dB.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Modulation Recognition Based on Neural Network Ensembles


    Weitere Titelangaben:

    Lect.Notes Social.Inform.


    Beteiligte:
    Wu, Qihui (Herausgeber:in) / Zhao, Kanglian (Herausgeber:in) / Ding, Xiaojin (Herausgeber:in) / Ma, Xiaobo (Autor:in) / Zhang, Bangnig (Autor:in) / Guo, Daoxing (Autor:in) / Cao, Lin (Autor:in) / Wei, Guofeng (Autor:in) / Ma, Qiwei (Autor:in)

    Kongress:

    International Conference on Wireless and Satellite Systems ; 2020 ; Nanjing, China September 17, 2020 - September 18, 2020



    Erscheinungsdatum :

    28.02.2021


    Format / Umfang :

    14 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Neural Network Ensembles Based on Lateral Inhibition of Cortical Columns

    Wang, C.-q. / Du, H.-w. | British Library Online Contents | 2008



    Boosted ECOC ensembles for face recognition

    Windeatt, T. / Ardeshir, G. / Institution of Electrical Engineers | British Library Conference Proceedings | 2003



    Design of effective neural network ensembles for image classification purposes

    Giacinto, G. / Roli, F. | British Library Online Contents | 2001