A recursive least square algorithm for estimation of brake cylinder pressure and road surface coefficients of adhesion using wheel speeds and control inputs for the hydraulic unit is proposed. It is intended for providing useful information for anti-lock brake systems (ABS) to improve the performance of control logic and diagnostic function. Based on the brake pressure model and wheel/vehicle dynamics, the errors between estimated wheel angular acceleration and its actual value according to the measured wheel speeds are minimized. Longitudinal load transfer is considered for calculation of tire normal forces based on the estimated deceleration according to the vehicle reference speeds from the ABS control logic. The proposed algorithm is evaluated using ABS simulation data under various braking conditions on a hardware-in-the-loop (HIL) test rig.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Model-Based Recursive Least Square Algorithm for Estimation of Brake Pressure and Road Friction


    Weitere Titelangaben:

    Lect. Notes Electrical Eng.


    Beteiligte:
    Ding, Nenggen (Autor:in) / Zhan, Xiaofei (Autor:in)


    Erscheinungsdatum :

    23.10.2012


    Format / Umfang :

    9 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Model-based recursive least square algorithm for estimation of brake pressure and road friction

    Ding,N. / Zhan,X. / Beihang Univ.,BUAA,CN | Kraftfahrwesen | 2012


    Model-Based Recursive Least Square Algorithm for Estimation of Brake Pressure and Road Friction F2012-G02-002

    Ding, N. / Zhan, X. / Society of Automotive Engineers of China (SAE-China) et al. | British Library Conference Proceedings | 2013



    ROAD FRICTION ESTIMATION USING RECURSIVE TOTAL LEAST SQUARES

    Shao, Liang / Lex, Cornelia / Hackl, Andreas et al. | British Library Conference Proceedings | 2016