Due to the overpopulation and diversity of vehicle choices, Vietnam's urban traffic scene is extremely complex. Hence, it is challenging for autonomous vehicles to perform Object detection and Multiple object tracking (MOT) tasks. This paper tackles a part of the problem by focusing on the detection and tracking of vehicles. First, we propose a custom dataset of typical vehicles in Vietnam to improve detection accuracy. We also trained YOLOv8, a state-of-the-art detecting model, on the created dataset and achieved a mean Average Precision (mAP) of 0.87. For tracking, we implement tracking-by-detection paradigm methods, utilizing results from the trained YOLOv8 detector. By experimenting with recent robust tracking algorithms, StrongSORT and ByteTrack, in the context of Vietnam traffic, our results reveal the potential advantages of each tracker for the task. Our goal is to craft a custom pipeline that can perform efficient and reliable vehicle detection and tracking for autonomous driving in Vietnam.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Vehicle Detection and Tracking in Vietnam’s Complex Urban Traffic


    Weitere Titelangaben:

    Lect. Notes in Networks, Syst.


    Beteiligte:
    Nghia, Phung Trung (Herausgeber:in) / Thai, Vu Duc (Herausgeber:in) / Thuy, Nguyen Thanh (Herausgeber:in) / Huynh, Van-Nam (Herausgeber:in) / Van Huan, Nguyen (Herausgeber:in) / Nguyen, Anh Lan (Autor:in) / Pham, Tung Xuan (Autor:in)

    Kongress:

    International Conference on Advances in Information and Communication Technology ; 2024 ; Thai Nguyen, Vietnam November 16, 2024 - November 17, 2024



    Erscheinungsdatum :

    11.03.2025


    Format / Umfang :

    10 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Vehicle detection, tracking and classification in urban traffic

    Zezhi Chen, / Ellis, T. / Velastin, S. A. | IEEE | 2012



    Stereovision Based Vehicle Tracking in Urban Traffic Environments

    Danescu, R. / Nedevschi, S. / Meinecke, M.M. et al. | IEEE | 2007


    Vehicle Detection and Tracking in Complex Traffic Circumstances with Roadside LiDAR

    Zhang, Zhenyao / Zheng, Jianying / Xu, Hao et al. | Transportation Research Record | 2019