Abstract In this paper, we consider the problem of online failure detection and isolation for mobile robots. The goal is to enable a mobile robot to determine whether the system is running free of faults or to identify the cause for faulty behavior. In general, failures cannot be detected by solely monitoring the process model for the error free mode because if certain model assumptions are violated the observation likelihood might not indicate a defect. Existing approaches therefore use comparably complex system models to cover all possible system behaviors. In this paper, we propose the mixed-abstraction particle filter as an efficient way of dealing with potential failures of mobile robots. It uses a hierarchy of process models to actively validate the model assumptions and distribute the computational resources between the models adaptively. We present an implementation of our algorithm and discuss results obtained from simulated and real-robot experiments.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Efficient Failure Detection for Mobile Robots Using Mixed-Abstraction Particle Filters


    Beteiligte:


    Erscheinungsdatum :

    01.01.2006


    Format / Umfang :

    15 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Reduction of Learning Time for Robots Using Automatic State Abstraction

    Asadpour, Masoud / Ahmadabadi, Majid Nili / Siegwart, Roland | Springer Verlag | 2006


    Standard Particle Swarm Optimization on Source Seeking Using Mobile Robots

    Zou, Rui / Kalivarapu, Vijay K. / Bhattacharya, Sourabh et al. | AIAA | 2015


    Design of robust failure detection filters

    San Martin, A.M. / Vander Velde, W.E. | Tema Archiv | 1986