Railway intrusion seriously threatens railway safety and may cause serious casualties and huge property losses. With the development of autonomous driving, image processing algorithms based on vehicle front video have developed rapidly. This paper proposes a railway intrusion detection framework based on vehicle front video. The framework mainly consists of two stages: object detection and semantic segmentation. In the first stage, an object detection algorithm is used to detect potential intrusion objects. The second stage uses the semantic segmentation algorithm to obtain the railway perimeter area. If the object is found within the railway perimeter, it is regarded as an intrusion. The railway intrusion detection framework proposed in this paper starts the semantic segmentation algorithm only when the object detection algorithm detects potential intrusion objects. Finally, the proposed framework is tested on railway video and achieves 100% accuracy and 23 FPS (Frames Per Second).


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Railway Intrusion Detection Framework Based on Vehicle Front Video


    Weitere Titelangaben:

    Lect. Notes Electrical Eng.


    Beteiligte:
    Liang, Jianying (Herausgeber:in) / Jia, Limin (Herausgeber:in) / Qin, Yong (Herausgeber:in) / Liu, Zhigang (Herausgeber:in) / Diao, Lijun (Herausgeber:in) / An, Min (Herausgeber:in) / Cao, Zhiwei (Autor:in) / Qin, Yong (Autor:in) / Xie, Zhengyu (Autor:in) / Li, Yongling (Autor:in)

    Kongress:

    International Conference on Electrical and Information Technologies for Rail Transportation ; 2021 October 21, 2021 - October 23, 2021



    Erscheinungsdatum :

    19.02.2022


    Format / Umfang :

    7 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    A Railway Intrusion Detection Framework Based on Vehicle Front Video

    Cao, Zhiwei / Qin, Yong / Xie, Zhengyu et al. | British Library Conference Proceedings | 2022


    A Railway Intrusion Detection Framework Based on Vehicle Front Video

    Cao, Zhiwei / Qin, Yong / Xie, Zhengyu et al. | TIBKAT | 2022


    Enhanced Few-Shot Learning for Intrusion Detection in Railway Video Surveillance

    Gong, Xiao / Chen, Xi / Zhong, Zhangdui et al. | IEEE | 2022


    Railway vehicle chassis front-end module, railway vehicle chassis and railway vehicle

    GUO LIKUI / YANG HANG / YANG SHIJIE et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Railway Foreign Object Intrusion Detection based on Deep Learning

    Ding, Xuewen / Cai, Xinnan / Zhang, Ziyi et al. | IEEE | 2022