A method is presented for converting a DFT of length \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {P^{M} - 1} \right)$$\end{document} into several subgroup circular convolutions of length M or divisor M. This decomposition leads to efficient methods for computing the DFT.
Fast DFT Algorithm Using Subgroup Convolutions
Footprints in Cambridge and Aviation Industries of China ; Kapitel : 2 ; 13-21
20.09.2021
9 pages
Aufsatz/Kapitel (Buch)
Elektronische Ressource
Englisch
FPT Algorithm for Two-Dimensional Cyclic Convolutions
NTRS | 1987
|Fast Recursive Computation of 1D and 2D Finite Convolutions
British Library Online Contents | 2005
|Convolutions of IFRA Distributions
NTIS | 1975
|