This paper introduces RL-Studio, an open-source software that eases the implementation of reinforcement learning algorithms to solve a problem. This software enables the integration of any simulator to recreate the problem where a reinforcement learning algorithm can be applied. Some relevant advantages of this tool are the generalization of common software components and the unified architecture. RL-Studio permits to just focus on fine tuning the hyperparameters of the algorithm and redefine the goal and reward function of the previously integrated projects. In case a non-integrated scenario, algorithm or simulator is needed, RL-Studio also provides some already integrated libraries that can be reused to save time. It has been experimentally validated in research projects and some of the canonical problems such as Robot Mesh or Mountain Car.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    RL-Studio: A Tool for Reinforcement Learning Methods in Robotics


    Weitere Titelangaben:

    Lect. Notes in Networks, Syst.


    Beteiligte:
    Tardioli, Danilo (Herausgeber:in) / Matellán, Vicente (Herausgeber:in) / Heredia, Guillermo (Herausgeber:in) / Silva, Manuel F. (Herausgeber:in) / Marques, Lino (Herausgeber:in) / Fernández de Cabo, Pedro (Autor:in) / Lucas, Rubén (Autor:in) / Arranz, Ignacio (Autor:in) / Paniego, Sergio (Autor:in) / Cañas, José M. (Autor:in)

    Kongress:

    Iberian Robotics conference ; 2022 ; Zaragoza, Spain November 23, 2022 - November 25, 2022



    Erscheinungsdatum :

    19.11.2022


    Format / Umfang :

    12 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch







    Toward faster reinforcement learning for robotics applications by using Gaussian processes

    Younes, A. / Yushchenko, A. S. | American Institute of Physics | 2019


    COMBINING REINFORCEMENT LEARNING AND GENETIC ALGORITHMS TO LEARN BEHAVIOURS IN MOBILE ROBOTICS

    Iglesias, R. / Rodriguez, M. / Regueiro, C. V. et al. | British Library Conference Proceedings | 2006