In the development of autonomous vehicles (AVs), ensuring safety and reliability is of paramount importance, especially when considering the presence of pedestrians and their behavior. This necessitates the implementation of robust motion control algorithms. Addressing the vehicle decision-making challenge in pedestrian-populated environments, we have devised an interactive pedestrian model that effectively combines a social force-based approach with pedestrian crossing intentions. By integrating these elements, our model can accurately determine pedestrian trajectories influenced by AVs. To further enhance the decision-making process, we introduce a framework rooted in social preference theory and deep reinforcement learning (DRL). This framework facilitates the generation of diverse decision strategies, accommodating various driving styles. To validate our proposed framework, we conduct rigorous network training and simulation experiments, systematically comparing the strategies derived from DRL algorithms with multiple control experiments. Our comprehensive evaluation demonstrates that the learning-based framework not only fosters smoother and more natural interactions between AVs and pedestrians but also enhances overall safety during such encounters.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Research on Interaction Strategies of Autonomous Vehicles Based on Social Preference


    Weitere Titelangaben:

    Lect. Notes Electrical Eng.


    Beteiligte:
    Qu, Yi (Herausgeber:in) / Gu, Mancang (Herausgeber:in) / Niu, Yifeng (Herausgeber:in) / Fu, Wenxing (Herausgeber:in) / Hu, Chungang (Autor:in) / Zhou, Zhuping (Autor:in) / Sun, Leyi (Autor:in) / Nian, Xinyi (Autor:in) / Chen, Zheng (Autor:in)

    Kongress:

    International Conference on Autonomous Unmanned Systems ; 2023 ; Nanjing, China September 09, 2023 - September 11, 2023



    Erscheinungsdatum :

    27.04.2024


    Format / Umfang :

    11 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Method and System to Recognize Individual Driving Preference for Autonomous Vehicles

    YANG I-HSUAN / LI LIYUN / MIAO JINGHAO et al. | Europäisches Patentamt | 2018

    Freier Zugriff

    INDIVIDUAL DRIVING PREFERENCE ADAPTED COMPUTERIZED ASSIST OR AUTONOMOUS DRIVING OF VEHICLES

    HEALEY JENNIFER A / ZAFIROGLU ALEXANDRA C | Europäisches Patentamt | 2021

    Freier Zugriff

    Individual driving preference adapted computerized assist or autonomous driving of vehicles

    HEALEY JENNIFER A / ZAFIROGLU ALEXANDRA C | Europäisches Patentamt | 2017

    Freier Zugriff

    INDIVIDUAL DRIVING PREFERENCE ADAPTED COMPUTERIZED ASSIST OR AUTONOMOUS DRIVING OF VEHICLES

    HEALEY JENNIFER A / ZAFIROGLU ALEXANDRA C | Europäisches Patentamt | 2016

    Freier Zugriff