Short-term traffic flow prediction plays an important role in route guidance and traffic management. K-NN is considered as one of the most important methods in short-term traffic forecasting, but some disadvantages limit the widespread application. In this paper, we use four tests to find the key factors of the K-NN method, which will give inspires to the further research to improve the method.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Key Factors of K-Nearest Neighbours Nonparametric Regression in Short-Time Traffic Flow Forecasting


    Weitere Titelangaben:

    Proceedings of the International Conference on Industrial Engineering and Engineering Management


    Beteiligte:
    Qi, Ershi (Herausgeber:in) / Shen, Jiang (Herausgeber:in) / Dou, Runliang (Herausgeber:in) / Zhong, Jing-ting (Autor:in) / Ling, Shuai (Autor:in)


    Erscheinungsdatum :

    07.01.2015


    Format / Umfang :

    4 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Short‐term traffic forecasting using self‐adjusting k‐nearest neighbours

    Sun, Bin / Cheng, Wei / Goswami, Prashant et al. | Wiley | 2018

    Freier Zugriff

    Short-term traffic forecasting using self-adjusting k-nearest neighbours

    Sun, Bin / Cheng, Wei / Goswami, Prashant et al. | IET | 2017

    Freier Zugriff

    Composite Nearest Neighbor Nonparametric Regression to Improve Traffic Prediction

    Kindzerske, Matthew D. / Ni, Daiheng | Transportation Research Record | 2007