This chapter provides an overview of algorithms for inertial sensor-based Simultaneous Localization and Mapping (SLAM) within the context of Unmanned Aerial Vehicles (UAVs). The presentation in this chapter is based on the use of the Extended Kalman Filter (EKF) and the Extended Information Filter (EIF) due to their ease of understanding, applicability to online implementation, and prevalence in airborne localization applications outside of SLAM (such as aided inertial localization). The discussion here includes an examination of SLAM for both small- and large-scale operation over the surface of the Earth, inertial SLAM using both range-bearing and bearing-only observations of the terrain, and a look at several different centralized and decentralized architectures for performing multi-vehicle SLAM.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Inertial Sensor-Based Simultaneous Localization and Mapping for UAVs


    Beteiligte:
    Valavanis, Kimon P. (Herausgeber:in) / Vachtsevanos, George J. (Herausgeber:in) / Bryson, Mitch (Autor:in) / Sukkarieh, Salah (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    09.08.2014


    Format / Umfang :

    31 pages




    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Self-localization of UAVs based on visual-inertial integrated navigation

    Zheng, Jinghao / Lei, Bo / Tan, Hai | SPIE | 2024


    A Simultaneous Control, Localization, and Mapping System for UAVs in GPS-Denied Environments

    Rodrigo Munguia / Antoni Grau / Yolanda Bolea et al. | DOAJ | 2025

    Freier Zugriff


    Pedestrian Simultaneous Localization and Mapping in Multistory Buildings Using Inertial Sensors

    Garcia Puyol, Maria / Bobkov, Dmytro / Robertson, Patrick et al. | IEEE | 2014


    C2VIR-SLAM: Centralized Collaborative Visual-Inertial-Range Simultaneous Localization and Mapping

    Jia Xie / Xiaofeng He / Jun Mao et al. | DOAJ | 2022

    Freier Zugriff