This chapter discusses the challenges and future directions in graph neural networks (GNN) for traffic prediction. Key challenges include data heterogeneity, multimodality, and dynamism, highlighting the need for integrating multi-source data, handling diverse transportation modes, and modeling evolving traffic patterns. GNN models, while effective, face challenges in interpretability, requiring frameworks that combine traditional traffic theories with data-driven insights. Further, small sample learning and uncertainty quantification remain critical issues. The book offers future research recommendations, such as optimizing model efficiency, incorporating emerging technologies like federated learning, and improving interpretability, ultimately aiming to enhance traffic prediction for intelligent transportation and connected vehicle systems.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Summary and Future Challenges


    Weitere Titelangaben:

    Wireless Networks


    Beteiligte:
    Shi, Quan (Autor:in) / Bao, Yinxin (Autor:in) / Shen, Qinqin (Autor:in) / Shi, Zhenquan (Autor:in) / Gao, Ruifeng (Autor:in)


    Erscheinungsdatum :

    30.04.2025


    Format / Umfang :

    4 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Summary and future plans

    Weil, J. / Dingeldein, R. C. | NTRS | 1972


    Summary and Future Work

    Shi, Dawei / Huang, Yuan / Wang, Junzheng et al. | Springer Verlag | 2021


    Summary and Future Directions

    Lyu, Feng / Li, Minglu / Shen, Xuemin | Springer Verlag | 2020


    Summary and Future Developments

    Seabridge, Allan / Radaei, Mohammad | Wiley | 2022