In this paper, a novel statistical framework is proposed for shot segmentation and classification. The proposed framework segments and classifies shots simultaneously using same difference features based on statistical inference. The task of shot segmentation and classification is taken as finding the most possible shot sequence given feature sequences, and it can be formulated by a conditional probability which can be divided into a shot sequence probability and a feature sequence probability. Shot sequence probability is derived from relations between adjacent shots by Bi-gram, and feature sequence probability is dependent on inherent character of shot modeled by HMM. Thus, the proposed framework segments shot considering the character of intra-shot to classify shot, while classifies shot considering character of inter-shot to segment shot, which obtain more accurate results. Experimental results on soccer and badminton videos are promising, and demonstrate the effectiveness of the proposed framework.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Statistical Framework for Shot Segmentation and Classification in Sports Video


    Beteiligte:
    Yagi, Yasushi (Herausgeber:in) / Kang, Sing Bing (Herausgeber:in) / Kweon, In So (Herausgeber:in) / Zha, Hongbin (Herausgeber:in) / Yang, Ying (Autor:in) / Lin, Shouxun (Autor:in) / Zhang, Yongdong (Autor:in) / Tang, Sheng (Autor:in)

    Kongress:

    Asian Conference on Computer Vision ; 2007 ; Tokyo, Japan November 18, 2007 - November 22, 2007


    Erschienen in:

    Computer Vision – ACCV 2007 ; Kapitel : 11 ; 106-115


    Erscheinungsdatum :

    01.01.2007


    Format / Umfang :

    10 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    A Hierarchical Framework for Generic Sports Video Classification

    Kolekar, M. H. / Sengupta, S. | British Library Conference Proceedings | 2006


    A Bayesian Video Modeling Framework for Shot Segmentation and Content Characterization

    Vasconcelos, N. / Lippman, A. / IEEE; Computer Society; Technical Committee on PAMI | British Library Conference Proceedings | 1997



    Fuzzy framework for unsupervised video content characterization and shot classification

    Ferman, A. M. / Tekalp, A. M. | British Library Online Contents | 2001


    Statistical analysing method of camera motion parameters for categorising sports video

    Takagi, S. / Hattori, S. / Yokoyama, K. et al. | British Library Conference Proceedings | 2003