Congestion in urban areas is a significant problem that negatively affects human health and the natural environment. In recent years, machine learning algorithms have shown great promise for improving traffic prediction and management. This article explores the potential of several machine learning techniques, including Decision Trees, Random Forests, Support Vector Machines (SVM), and Neural Networks, for predicting traffic congestion. Traffic volume, temperature, time of day, and road type are a few of the variables included in the Seattle Traffic Flow Speeds dataset utilized by researchers to evaluate the effectiveness of each technology. The tests demonstrate that the algorithms can accurately predict where and when traffic congestion will occur. The potential applications and consequences of algorithms for predicting traffic congestion in real time, integrating traffic management systems, devising the most efficient routes, and managing traffic are investigated. The studies supporting machine learning algorithms in traffic management emphasize potential benefits such as reduced travel times, less congestion, and improved transportation efficiency.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Machine Learning Methods for Predicting Traffic Congestion Forecasting


    Weitere Titelangaben:

    Lect. Notes in Networks, Syst.


    Beteiligte:
    Simic, Milan (Herausgeber:in) / Bhateja, Vikrant (Herausgeber:in) / Murty, M. Ramakrishna (Herausgeber:in) / Panda, Sandeep Kumar (Herausgeber:in) / Rele, Mayur (Autor:in) / Julian, Anitha (Autor:in) / Patil, Dipti (Autor:in) / Sakthekannan, M. S. (Autor:in) / Krishnan, Udaya (Autor:in)

    Kongress:

    International Conference on Smart Computing and Informatics ; 2024 ; Visakhapatnam, India April 18, 2024 - April 19, 2024



    Erscheinungsdatum :

    22.11.2024


    Format / Umfang :

    16 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    A Traffic Congestion Forecasting Model using CMTF and Machine Learning

    Chowdhury, Md. Mohiuddin / Hasan, Mahmudul / Safait, Saimoom et al. | IEEE | 2018


    Forecasting of Traffic Congestion

    Kerner, B. S. / Rehborn, H. / Aleksic, M. | British Library Conference Proceedings | 2000


    Learning Traffic Network Embeddings for Predicting Congestion Propagation

    Sun, Yidan / Jiang, Guiyuan / Lam, Siew-Kei et al. | IEEE | 2022


    Traffic Congestion Forecasting Based on Possibility Theory

    Sun, Zhanquan / Li, Zhao / Zhao, Yanling | Springer Verlag | 2014


    URBAN TRAFFIC CONGESTION FORECASTING METHOD AND SYSTEM

    PARK HEE JUNG | Europäisches Patentamt | 2023

    Freier Zugriff