A Lagrangian treatment of various forms of the rigid-body equations of motion is presented in this paper, including the most general expressions, which are the Boltzmann-Hamel equations. One key result that enables the derivations is the expression for the Hamel coefficients for the special case of rotational motion of a rigid body. The Hamel coefficients naturally arise in the Lagrange equations for quasi-coordinates. Another key result that enables the derivations is the expression for additional Hamel coefficients that arise when the translational-velocity vector of the mass center is coordinatized (expressed) along body-fixed axes. One interesting discovery is that the Boltzmann-Hamel equations are often misrepresented in standard textbooks. The misrepresentation stems from the fact that care is not exercised to distinguish the functional forms of the kinetic-energy expression.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Hamel Coefficients for the Rotational Motion of a Rigid Body


    Weitere Titelangaben:

    J of Astronaut Sci


    Beteiligte:
    Hurtado, J. E. (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.03.2004


    Format / Umfang :

    19 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Hamel Coefficients for the Rotational Motion of a Rigid Body

    Hurtado, J. E. | British Library Conference Proceedings | 2004



    Hamel Coefficients For The Rotational Motion Of A Rigid Body

    Schaub, Hanspeter / Junkins, John L. | AIAA | 2003


    Hamel Coefficients for the Rotational Motion of a Rigid Body (AAS 03-283)

    Hurtado, J. E. / American Aeronautical Society / Texas A&M University | British Library Conference Proceedings | 2003