The multi-robot adaptive sampling problem aims at finding trajectories for a team of robots to efficiently sample the phenomenon of interest within a given endurance budget of the robots. In this paper, we propose a robust and scalable approach using Multi-Agent Reinforcement Learning for cooperated Adaptive Sampling (MARLAS) of quasi-static environmental processes. Given a prior on the field being sampled, the proposed method learns decentralized policies for a team of robots to sample high-utility regions within a fixed budget. The multi-robot adaptive sampling problem requires the robots to coordinate with each other to avoid overlapping sampling trajectories. Therefore, we encode the estimates of neighbor positions and intermittent communication between robots into the learning process. We evaluated MARLAS over multiple performance metrics and found it to outperform other baseline multi-robot sampling techniques. Additionally, we demonstrate scalability with both the size of the robot team and the size of the region being sampled. We further demonstrate robustness to communication failures and robot failures. The experimental evaluations are conducted both in simulations on real data and in real robot experiments on demo environmental setup (The demo video can be accessed at: https://youtu.be/qRRpNC60KL4).


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    MARLAS: Multi Agent Reinforcement Learning for Cooperated Adaptive Sampling


    Weitere Titelangaben:

    Springer Proceedings in Advanced Robotics


    Beteiligte:
    Bourgeois, Julien (Herausgeber:in) / Paik, Jamie (Herausgeber:in) / Piranda, Benoît (Herausgeber:in) / Werfel, Justin (Herausgeber:in) / Hauert, Sabine (Herausgeber:in) / Pierson, Alyssa (Herausgeber:in) / Hamann, Heiko (Herausgeber:in) / Lam, Tin Lun (Herausgeber:in) / Matsuno, Fumitoshi (Herausgeber:in) / Mehr, Negar (Herausgeber:in)

    Kongress:

    International Symposium on Distributed Autonomous Robotic Systems ; 2022 ; Montbéliard, France November 28, 2022 - November 30, 2022



    Erscheinungsdatum :

    01.02.2024


    Format / Umfang :

    16 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    PATH PLANNING FOR COOPERATED AIR VEHICLES

    MCNAIR MICHAEL / LI JUAN / CAMPBELL KIP GREGORY | Europäisches Patentamt | 2022

    Freier Zugriff


    Path planning for cooperated air vehicles

    MCNAIR MICHAEL / LI JUAN / CAMPBELL KIP GREGORY | Europäisches Patentamt | 2022

    Freier Zugriff

    CONTROLLING VEHICLE-INFRASTRUCTURE COOPERATED AUTONOMOUS DRIVING

    YANG GUOYI / ZHANG WEN / YANG FAN et al. | Europäisches Patentamt | 2022

    Freier Zugriff

    Traffic adaptive control method based on multi-agent reinforcement learning

    HUANG HUA / ZHANG WEI / LI XIAOLONG et al. | Europäisches Patentamt | 2024

    Freier Zugriff