Due to the vast sea area of China, it is not easy for ships to identify and dispatch at sea, so the target recognition of ships has always been the focus of the development of the target recognition and detection technology. However, the traditional methods of ship recognition are slow and not practical. The target recognition technology of remote sensing images based on deep learning makes up for this shortcoming, and the recognition is fast and accurate. In this paper, YOLO V3 deep learning network is used to create a high-precision remote sensing image training and testing data set. YOLO V3 network is trained and tested, and then TX2 module is used as the carrier to design a concise user interface to test the effect of the computer running in the embedded system.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Ship Recognition Technology of High Precision Remote Sensing Images Based on YOLO


    Weitere Titelangaben:

    Lect. Notes Electrical Eng.


    Beteiligte:
    Yan, Liang (Herausgeber:in) / Duan, Haibin (Herausgeber:in) / Yu, Xiang (Herausgeber:in) / Ni, Rui (Autor:in) / Hua, Bing (Autor:in)


    Erscheinungsdatum :

    30.10.2021


    Format / Umfang :

    9 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Ship Recognition Technology of High Precision Remote Sensing Images Based on YOLO

    Ni, Rui / Hua, Bing | British Library Conference Proceedings | 2022




    Ship Remote Sensing Target Recognition Based on YOLOV5

    Hao, Ning / Li, Yunwei / Ma, Yusen et al. | Springer Verlag | 2024