Detecting or estimating the state of the moving target accurately on the road helps predict the behavior of the moving target, and this is beneficial for self-vehicles’ trajectory planning and safe navigation. The difficulty of state estimation lies in how to estimate the state of the target in real-time and accurately, and it will not be divergence when the sensor has missed detection, false detection and time-varying measurement noise. In response to this difficulty, it is proposed to use multi-source information fusion and Kalman filter to make up for the missed detection of the sensor, use the nearest neighbor correlation algorithm to match the detection and prediction to reduce the impact of false detection, and use the adaptive measurement noise estimation method to estimate the current value of the measurement noise in real-time to improve the stability and accuracy of the filter when the measurement noise is time-varying. The proposed method relies on the smart car platform for experiments. The experimental results show that the position and velocity estimation accuracy of the proposed algorithm are all better than the comparison method.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Motion State Estimation Based on Multi-sensor Fusion and Noise Covariance Estimation


    Weitere Titelangaben:

    Lect. Notes Electrical Eng.


    Beteiligte:
    Wu, Meiping (Herausgeber:in) / Niu, Yifeng (Herausgeber:in) / Gu, Mancang (Herausgeber:in) / Cheng, Jin (Herausgeber:in) / Jiang, Chao (Autor:in) / Wang, Zhiling (Autor:in) / Liang, Huawei (Autor:in) / Zhang, Shijing (Autor:in) / Tan, Shuhang (Autor:in)

    Kongress:

    International Conference on Autonomous Unmanned Systems ; 2021 ; Changsha, China September 24, 2021 - September 26, 2021



    Erscheinungsdatum :

    18.03.2022


    Format / Umfang :

    11 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Motion State Estimation Based on Multi-sensor Fusion and Noise Covariance Estimation

    Jiang, Chao / Wang, Zhiling / Liang, Huawei et al. | TIBKAT | 2022


    Motion State Estimation Based on Multi-sensor Fusion and Noise Covariance Estimation

    Jiang, Chao / Wang, Zhiling / Liang, Huawei et al. | British Library Conference Proceedings | 2022


    Covariance Estimation and Gaussianity Assessment for State and Measurement Noise

    Duník, Jindřich / Kost, Oliver / Straka, Ondřej et al. | AIAA | 2020



    State estimation for aerial vehicles using multi-sensor fusion

    SCHERER SEBASTIAN / YU SONG / NUSKE STEPHEN | Europäisches Patentamt | 2019

    Freier Zugriff