EstimatingLi, MengChen, TaoLi, ZhihuaLiu, Hezi count and density maps from crowd images has a wide range of applications such as video surveillance, traffic monitoring and pedestrian dynamics study. The state-of-the art deep learning approaches generally build a multi-column deep network architecture. Although such architectures perform well, the inference cost is neglected. In this paper, we apply the net-work compression to the convolutional neural network-basedConvolutional Neural Networks (CNN) crowd density estimationDensity estimation model, to reduce its storage and computation costs. Specifically, we rely on using l1-norm to select unimportant filters and physically prune them. Convolutional filters with small scaling factor value and its corresponding kernels in the next layer will be removed. The model can be trained to improve its regression performance and identify the unimportant filters at the same time. A state-of-the art model, the CSRNet, is tested in the ShanghaiTech dataset. Our method can reduce inference costs for the network significantly (up to approximately 78%) while regaining close to the original accuracy by retraining the networks.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    An Efficient Crowd Density Estimation Algorithm Through Network Compression


    Weitere Titelangaben:

    Springer Proceedings Phys.


    Beteiligte:
    Zuriguel, Iker (Herausgeber:in) / Garcimartin, Angel (Herausgeber:in) / Cruz, Raul (Herausgeber:in) / Li, Meng (Autor:in) / Chen, Tao (Autor:in) / Li, Zhihua (Autor:in) / Liu, Hezi (Autor:in)

    Erschienen in:

    Traffic and Granular Flow 2019 ; Kapitel : 21 ; 165-173


    Erscheinungsdatum :

    17.11.2020


    Format / Umfang :

    9 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    An Efficient Crowd Density Estimation Algorithm Through Network Compression

    Li, Meng / Chen, Tao / Li, Zhihua et al. | TIBKAT | 2020


    Crowd Density Estimation via Global Crowd Collectiveness Metric

    Ling Mei / Mingyu Yu / Lvxiang Jia et al. | DOAJ | 2024

    Freier Zugriff

    Higher-order SVD analysis for crowd density estimation

    Zhou, B. / Zhang, F. / Peng, L. | British Library Online Contents | 2012


    DDAD: Detachable Crowd Density Estimation Assisted Pedestrian Detection

    Tang, Wenxiao / Liu, Kun / Shakeel, M. Saad et al. | IEEE | 2023


    Crowd Density Estimation Using Fusion of Multi-Layer Features

    Ding, Xinghao / He, Fujin / Lin, Zhirui et al. | IEEE | 2021