The accuracy of the algorithm described earlier is at the O(h) level, also known as the first-order algorithm. The computational error is closely related to the step sizeStep size h. If h is large, the computational error is also large. For example, imprecisely, if h = 0.01 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h = 0.01$$\end{document}, the computational error is almost 0.01. If there is an algorithm with O ( h 2 ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(h^2)$$\end{document}, called a second-order algorithm, it is possible to obtain a computational error of 0.0001, while a fourth-order algorithm O ( h 4 ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(h^4)$$\end{document} may bring the error down to 0 . 01 4 = 10 - 8 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.01^4 = 10^{-8}$$\end{document}. It follows that if we want to obtain a numerical solution with high accuracy, we need to increase the order of the algorithm.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    High-Precision Numerical Algorithms and Implementation in Fractional Calculus


    Beteiligte:
    Xue, Dingyü (Autor:in) / Bai, Lu (Autor:in)

    Erschienen in:

    Fractional Calculus ; Kapitel : 4 ; 101-138


    Erscheinungsdatum :

    04.05.2024


    Format / Umfang :

    38 pages




    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Definitions and Numerical Evaluations of Fractional Calculus

    Xue, Dingyü / Bai, Lu | Springer Verlag | 2024


    Introduction to Fractional Calculus

    Xue, Dingyü / Bai, Lu | Springer Verlag | 2024


    Fuzzy Fractional Order Controller Based on Fractional Calculus

    Junyi, C. / Jin, L. / Binggang, C. | British Library Online Contents | 2005