The Internet of Things (IoT) is coined by many different standards, protocols, and data formats that are often not compatible to each other. Thus, the integration of different heterogeneous (IoT) components into a uniform IoT setup can be a time-consuming manual task. This lacking interoperability between IoT components has been addressed with different approaches in the past. However, only very few of these approaches rely on Machine Learning techniques. In this work, we present a new way towards IoT interoperability based on Deep Reinforcement Learning (DRL). In detail, we demonstrate that DRL algorithms, which use network architectures inspired by Natural Language Processing (NLP), can be applied to learn to control an environment by merely taking raw JSON or XML structures, which reflect the current state of the environment, as input. Applied to IoT setups, where the current state of a component is often reflected by features embedded into JSON or XML structures and exchanged via messages, our NLP DRL approach eliminates the need for feature engineering and manually written code for pre-processing of data, feature extraction, and decision making.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Deep Reinforcement Learning for IoT Interoperability


    Weitere Titelangaben:

    ARENA2036


    Beteiligte:
    Weißgraeber, Philipp (Herausgeber:in) / Heieck, Frieder (Herausgeber:in) / Ackermann, Clemens (Herausgeber:in) / Klöser, Sebastian (Autor:in) / Kotstein, Sebastian (Autor:in) / Reuben, Robin (Autor:in) / Zerrer, Timo (Autor:in) / Decker, Christian (Autor:in)


    Erscheinungsdatum :

    2021-06-02


    Format / Umfang :

    10 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Deep Reinforcement Learning for IoT Interoperability

    Klöser, Sebastian / Kotstein, Sebastian / Reuben, Robin et al. | TIBKAT | 2021


    Deep Reinforcement Learning

    Huang, Xiaowei / Jin, Gaojie / Ruan, Wenjie | Springer Verlag | 2012




    Autonomous Driving with Deep Reinforcement Learning

    Zhu, Yuhua / Technische Universität Dresden | SLUB | 2023