With the development of military informatization, military evolution is bound to include a large number of confrontations with artificial intelligence algorithms. In this paper, we discuss the air-to-air combat problem in that both sides have multiple UAVs involved, and propose a UAV Cluster Dominance Decision Algorithm Based on Reinforcement Learning algorithm (UCDD-RL). The combat dominance of each UAV is evaluated according to the live number, closeness, health, and relative positions of both camps in the local UAV cluster. The combat dominance of the UAV is the input of the fuzzy inference system, and its output is the UAV’s combat strategy. The combat strategies include fight, escape, occupy, and change cluster. We perform numerical simulations with the UCDD-RL algorithm in the UAV combat environment. By analyzing the reward, the win rate, and the live number of UAVs in the experiments, we verify that the UCDD-RL algorithm has a positive effect on improving UAV air combat level.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Reinforcement Learning-Based Cooperative Adversarial Algorithm for UAV Cluster


    Weitere Titelangaben:

    Lect. Notes Electrical Eng.


    Beteiligte:
    Fu, Wenxing (Herausgeber:in) / Gu, Mancang (Herausgeber:in) / Niu, Yifeng (Herausgeber:in) / Li, Yan (Autor:in) / Gao, Yanlong (Autor:in) / Dai, Xunhua (Autor:in) / Nian, Xiaohong (Autor:in) / Wang, Haibo (Autor:in) / Xiong, HongYun (Autor:in)

    Kongress:

    International Conference on Autonomous Unmanned Systems ; 2022 ; Xi'an, China September 23, 2022 - September 25, 2022



    Erscheinungsdatum :

    10.03.2023


    Format / Umfang :

    10 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch







    A reinforcement learning algorithm in cooperative multi-robot domains

    Fernández, Fernando / Borrajo Millán, Daniel / Parker, Lynne E. | BASE | 2005

    Freier Zugriff

    CERTIFIED ADVERSARIAL ROBUSTNESS FOR DEEP REINFORCEMENT LEARNING

    LUETJENS BJOERN MALTE / EVERETT MICHAEL F / HOW JONATHAN P et al. | Europäisches Patentamt | 2021

    Freier Zugriff