This chapter is focused on the design and analysis of adaptive controllers for dynamical systems operating in the presence of nonparametric unknown nonlinear functions and bounded time-varying disturbances. In order to counter these types of uncertainties, we will employ direct adaptive model reference controllers equipped with online function approximation architectures, such as artificial neural networks (NNs). We begin with an introductory review of theoretical results related to function approximation by NNs, (Sects. 12.1, 12.2, and 12.3). As for any other function representation constructs, NN-based approximations are valid only on bounded sets. So, a suitable control design must account for a set of state limiting constraints imposed by the chosen function approximation method. For our proposed adaptive control design (Sect.12.4), we will utilize online tunable artificial NNs to represent unstructured uncertainties in the system dynamics of interest. In addition, we will add a state limiting design modification to keep the system trajectories within predefined NN-induced state limiting constraints. We end this chapter with a comprehensive step-by-step design example of an automatic landing system for a medium-size transport aircraft.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Approximation-Based Adaptive Control


    Weitere Titelangaben:

    Adv. Textbooks Control, Signal Proc.


    Beteiligte:


    Erscheinungsdatum :

    01.09.2012


    Format / Umfang :

    31 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Approximation-Based Adaptive Control

    Lavretsky, Eugene / Wise, Kevin A. | Springer Verlag | 2024



    Backstepping-Based Flight Control with Adaptive Function Approximation

    Jay Farrell / Manu Sharma / Marios Polycarpou | AIAA | 2005


    Adaptive cruise control method based on neural network approximation

    SONG GUOQIANG / SHANG JUNYA / CHEN GANG | Europäisches Patentamt | 2024

    Freier Zugriff