Abstract In the presented algorithm, the Gaussian maximum a posteriori (MAP) filter and the traditional extended Kalman filter (EKF) are implemented in parallel to obtain the adaptive ability. One of the elemental filters, the EKF yields high precision in the scenario with low process noise, whereas the other elemental filter, the Gaussian MAP filter is adopted to utilize the measurement maximally in the presence of high process noise. The state estimates of the parallel filters are combined automatically based on the confidence for the underlying situation, such that the presented algorithm can adapt to different operation scenarios. The presented algorithm can provide precise relative attitude and position knowledge between two spacecrafts. It is applicable for many space missions, such as spacecraft formation flying, autonomous rendezvous docking and failed satellite removal. This is the first paper that presents the adaptive MAP estimator based on parallel multiple filters for spacecraft relative navigation.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Adaptive Maximum a Posteriori Filtering for Relative Attitude and Position Estimation


    Beteiligte:
    Xiong, Kai (Autor:in) / Zhang, HaoYu (Autor:in)


    Erscheinungsdatum :

    30.09.2017


    Format / Umfang :

    14 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch