The article deals with synthesis of a traction induction motor observer. The observer is one of the most important elements of the field-oriented traction motor control system. It largely determines such control measures as speed, accuracy and lack of fluctuation. The electromagnetic torque regulation of a traction induction motor mut be done at high speed for efficient use of conjunction of a wheel and a rail. Therefore, the feasibility of using an adaptive Luenberger filter as a traction induction motor observer was investigated. Its application allows determining the stator current, flux linkage of the rotor and the angular velocity of rotation of the rotor only by measuring electrical quantities, without a speed sensor. The possibility of assessing the change in the active resistance of the stator and rotor and the moment of resistance on the shaft of the traction motor were investigated. Mathematical modeling methods were used to examine the work of the observer on the example of the traction engine of the main electric locomotive. The start of the state identifier with zero initial conditions has been made and investigated when connecting to a running traction motor and changing the angular speed of rotation of the rotor. The use of observer based on the adaptive Luenberger filter allows receiving information about the work of the traction motor with the precision required for the efficient operation of a field-oriented control system.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Traction Induction Motor State Observer Based on an Luenberger Filter


    Weitere Titelangaben:

    Lect. Notes in Networks, Syst.


    Beteiligte:
    Kovalev, Sergey (Herausgeber:in) / Kotenko, Igor (Herausgeber:in) / Sukhanov, Andrey (Herausgeber:in) / Kolpakhchyan, Pavel G. (Autor:in) / Pakhomin, Sergey A. (Autor:in) / Kochin, Alexander E. (Autor:in) / Evstaf’ev, Andrey M. (Autor:in) / Andreev, Vladimir (Autor:in)

    Kongress:

    International Conference on Intelligent Information Technologies for Industry ; 2023 ; St. Petersburg, Russia September 25, 2023 - September 30, 2023



    Erscheinungsdatum :

    18.09.2023


    Format / Umfang :

    11 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Luenberger Observer for Lithium Battery State-of-Charge Estimation

    Barsali, Stefano / Ceraolo, Massimo / Li, Jiajing et al. | British Library Conference Proceedings | 2020


    INS errors compensation algorithm based on Luenberger Observer

    Rataichuk, I. O. / Kortunov, V. I. | IEEE | 2013


    Integral Extended Luenberger Observer for Caster Odometers

    Yonezawa, Yuta / Sekiguchi, Kazuma / Nonaka, Kenichiro | British Library Online Contents | 2017