Intelligent road traffic monitoring necessitates the development of efficient systems capable of handling the substantial data volumes continuously generated by traffic surveillance cameras. Automated solutions are essential since manual data analysis is both labour-intensive and impractical. The goal of our deep learning-based method is to build a traffic detection system that is both quick and accurate, with no human involvement required. The study focuses on two critical aspects of intelligent traffic monitoring: accident detection and traffic flow analysis. The goal of this project is to improve future intelligent transportation systems by using TrafficNet technology. The TrafficNet system performs multiple activities, including data splitting, data analysis, deep learning convolutional neural network (DLCNN) model training, traffic forecasting, and performance evaluation. Following that, DLCNN model for diverse traffic scenarios was developed. The TrafficNet system eventually anticipates numerous categories, such as heavy traffic, light traffic, accidents, and fires. The proposed TrafficNet demonstrates its accuracy and versatility by effectively identifying regions in a wide range of applications.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Enhanced Deep Learning Model for Road Transportation Safety with Accident Detection and Traffic Flow Analysis


    Weitere Titelangaben:

    AI Front. & Ethics


    Beteiligte:
    Arya, Rajeev (Herausgeber:in) / Sharma, Subhash Chander (Herausgeber:in) / Verma, Ajit Kumar (Herausgeber:in) / Iyer, Brijesh (Herausgeber:in) / Santosh Kumar Patra, P. (Autor:in) / Hari Krishna, B. (Autor:in) / Krishna, Janapati Chaitanya (Autor:in) / Krishna Satya Varma, M. (Autor:in) / Bharath Simha Reddy, V. (Autor:in)


    Erscheinungsdatum :

    10.09.2024


    Format / Umfang :

    26 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Road traffic accident risk prediction deep learning algorithm

    YU ZHIQING / YAO HUI / LI KUN et al. | Europäisches Patentamt | 2022

    Freier Zugriff

    Traffic Density Investigation & Road Accident Analysis in India using Deep Learning

    Manchanda, Chinkit / Rathi, Rajat / Sharma, Nikhil | IEEE | 2019



    Deep learning based condition monitoring of road traffic for enhanced transportation routing

    Srinivasarao, Goda / Penchaliah, U. / Devadasu, G. et al. | Springer Verlag | 2024