Abstract Radar target recognition technology is a hot topic in modern radar research field. It can provide target information for the instructor or the operator to make the right decision. Due to its structural feature information, high-resolution range profile (HRRP) is widely used in the field of radar automatic target recognition (RATR). In this paper, we introduced a classification method based on kernel principal component analysis and collaborative representation (KPCA_CRC). First, KPCA is used to extract the nonlinear structure of target data and to reduce the data dimensions of the sample. Then, collaborative representation of samples is carried out to further improve the accuracy of target recognition. Experiments have been done on airplane data of a domestic institution. Compared with Fisher discriminant dictionary learning (FDDL) and the algorithm of CRC_RLS, the experimental results of the method of KPCA_CRC show better performance.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Radar Target Recognition Method Based on Kernel Principal Component Analysis and Collaborative Representation


    Beteiligte:
    Guo, Zhiqiang (Autor:in) / Wu, Keming (Autor:in) / Liu, Lan (Autor:in) / Huang, Jing (Autor:in)


    Ausgabe :

    1st ed. 2016


    Erscheinungsdatum :

    01.01.2016


    Format / Umfang :

    11 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch