Sensor fault detection, isolation, and accommodation via Adaptive Kalman Filter (AKF) algorithm are applied to the lateral dynamics of Boeing-747 aircraft in this study. The flight dynamic model of Boeing-747 aircraft in steady state flight condition is presented and investigated. In nominal case, the Optimal Linear Kalman Filter (OLKF) gives fine estimation values. However, when there is a malfunction on the measurement channels, the accuracy of the filter estimations become poor and the filter becomes unreliable. Two faulty scenarios are investigated. The first scenario comprises the single sensor fault and the second is a simultaneous double sensor fault. The fault detection algorithm detects the fault and isolation process performs via calculating and comparing the statistics of sample and theoretical error variances to distinguish the faulty sensor. Lastly, fault accommodation process is presented in the study as implemented by Adaptive Kalman filter algorithm and demonstrates very efficient, firm, and reliable performance on behalf of enhancing the estimation values of the filter.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Adaptive Kalman Filter-Based Sensor Fault Detection, Isolation, and Accommodation for B-747 Aircraft


    Weitere Titelangaben:

    Sustainable aviat.


    Beteiligte:
    Karakoc, T. Hikmet (Herausgeber:in) / Yilmaz, Nadir (Herausgeber:in) / Dalkiran, Alper (Herausgeber:in) / Ercan, Ali Haydar (Herausgeber:in) / Guven, Akan (Autor:in) / Hajiyev, Chingiz (Autor:in)

    Kongress:

    International Symposium on Unmanned Systems and The Defense Industry ; 2021 ; Washington, DC, DC, USA October 26, 2021 - October 28, 2021



    Erscheinungsdatum :

    28.06.2023


    Format / Umfang :

    12 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch