As modern technology continues to advance, drones and their applications have attracted more and more attention. What is more efficient to achieve the trajectory planning and optimization of UAVs has become more and more important. Particle swarm algorithm is widely used in the field of UAVs, and it plays an important role in determining the path of UAVs. In this paper we will explore UAV trajectory planning based on particle swarm algorithm. The main work includes: Firstly, the dynamics attitude control about quadrotor UAV is studied. Subsequently, a comprehensive mathematical framework for Unmanned Aerial Vehicle (UAV) trajectory optimization is formulated, wherein the Particle Swarm Optimization (PSO) algorithm is employed to ascertain the optimal path planning solution. Ultimately, the efficacy of the algorithm, both prior to and following enhancement, is evaluated through the application of two standard benchmark functions.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Autonomous Attitude Control and Trajectory Planning for UAV


    Weitere Titelangaben:

    Springer Aerospace Techn.


    Beteiligte:
    Zhu, Zheng Hong (George) (Herausgeber:in) / Wei, Xiaohui (Herausgeber:in) / Li, Renfu (Herausgeber:in) / Liu, Yinghuang (Autor:in) / Tian, Xizhe (Autor:in) / Xue, Bowen (Autor:in) / Yuan, Qijin (Autor:in) / Qiu, Zhonmin (Autor:in) / Wang, Jian (Autor:in)

    Kongress:

    International Conference on Advanced Unmanned Aerial Systems ; 2024 ; Nanchang, China September 20, 2024 - September 22, 2024



    Erscheinungsdatum :

    18.03.2025


    Format / Umfang :

    11 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Autonomous vehicle trajectory planning

    FALCONER WILLIAM / KONCHAN ZACHARY / CARRIER LEONARD EBER et al. | Europäisches Patentamt | 2020

    Freier Zugriff

    Attitude control and trajectory tracking of an autonomous miniature aerial vehicle

    Haddadi, Seyed Jamal / Emamagholi, Omid / Javidi, Farahnaz et al. | IEEE | 2015




    Trajectory Planning for Autonomous Vehicles at Autonomous Intersection

    Chen, Jing / Mu, Chen / Zhao, Lu | TIBKAT | 2020