In a complex environment, Unmanned Aerial Vehicles (UAVs) encounter multiple threats and require an optimal path to reach their destination. This paper proposes a probability distribution modeling method for threat areas and a point-selection solution method for UAV flight paths. Furthermore, the optimization index and constraint conditions of the path planning problem model are defined based on the specified requirements. To enhance the search capability of the original algorithm, an improved Sparrow Search algorithm is developed. This improvement focuses on correcting the location update strategy of discoverers and participants. The efficiency of the improved algorithm is demonstrated through comparative simulations.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    UAV Path Planning Under Multiple Threats Based on Improved Sparrow Search


    Weitere Titelangaben:

    Lect. Notes Electrical Eng.


    Beteiligte:
    Qu, Yi (Herausgeber:in) / Gu, Mancang (Herausgeber:in) / Niu, Yifeng (Herausgeber:in) / Fu, Wenxing (Herausgeber:in) / Zhao, Yuqiao (Autor:in) / Peng, Zhangchi (Autor:in) / Qian, Chen (Autor:in)

    Kongress:

    International Conference on Autonomous Unmanned Systems ; 2023 ; Nanjing, China September 09, 2023 - September 11, 2023



    Erscheinungsdatum :

    26.04.2024


    Format / Umfang :

    15 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    UAV Path Planning under Dynamic Threats Using an Improved PSO Algorithm

    Jong-Jin Shin / Hyochoong Bang | DOAJ | 2020

    Freier Zugriff

    A Path-Planning Method for UAV Swarm under Multiple Environmental Threats

    Xiangyu Fan / Hao Li / You Chen et al. | DOAJ | 2024

    Freier Zugriff

    UAV Trajectory Planning Based on Adaptive Nonlinear Convergence Global Sparrow Search Algorithm

    Qian, Cheng / Zhang, Xiaoyan / Liang, Xiaoxi et al. | Springer Verlag | 2025