Generally, microgas turbines are in the range of 30–200 kW. So, here it is proposed to develop a microgas turbine engine with a capacity of 3 kW which will have applications in unmanned aerial vehicle (UAV) and standalone power generation for domestic use. In this study, the behavior of non-reacting flow pattern inside a swirl stabilized can combustor is studied. Total pressure loss, which is an important performance parameter, is predicted numerically and compared with that from experiments. Good agreement is achieved between experimental and numerical results. The combustor total pressure drop was found to be negligible; in the range of 0.002–0.06% at an inlet velocity ranges from 1.7 to 10.19 m/s. Flow pattern indicates strong vortex formation due to secondary air entrainment inside the flame tube.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Experimental and Numerical Investigation of Non-reacting Flow in Can Combustor for Microgas Turbine Engine


    Weitere Titelangaben:

    Lect.Notes Mechanical Engineering


    Beteiligte:
    Gascoin, Nicolas (Herausgeber:in) / Balasubramanian, E. (Herausgeber:in) / Kirubakaran, V. (Autor:in) / Bhatt, David S. (Autor:in)


    Erscheinungsdatum :

    27.09.2020


    Format / Umfang :

    7 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Non-Reacting and Reacting Flow Analysis in an Aero-Engine Gas Turbine Combustor Using CFD

    Ganesan, V. / Society of Automotive Engineers | British Library Conference Proceedings | 2007



    Numerical Calculation of Turbulent Reacting Flow in a Model Gas-Turbine Combustor

    Schneider, G. / Darbandi, M. | British Library Conference Proceedings | 2009


    Numerical Calculation of Turbulent Reacting Flow in a Model Gas-Turbine Combustor

    Schneider, Gerry / Darbandi, M. / Ghafourizadeh, Majid | AIAA | 2009