AbstractThis paper presents a destination and time-series inference algorithm for tracking moving targets. The destination of the object is considered the intent, and inference and state estimation are performed in the Bayesian framework. To describe the destination-aware target motion, we construct the state transition model using a conditionally Markov process. We introduce a multiple model to achieve simultaneous intent and time-series inferences. Given finite destination candidates, the maximum a posteriori hypothesis is chosen as the destination. For time-series inference, local estimates obtained from Kalman filters are fused to yield target state estimates. To address unspecified terminal conditions, the proposed algorithm incorporates parameter correction techniques based on relative geometry. Numerical simulations are performed to validate the proposed inference algorithm.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Destination and time-series inference of moving objects via conditionally Markov process


    Weitere Titelangaben:

    CEAS Aeronaut J


    Beteiligte:
    Lee, Seokwon (Autor:in) / Shin, Hyo-Sang (Autor:in)

    Erschienen in:

    CEAS Aeronautical Journal ; 15 , 4 ; 1189-1199


    Erscheinungsdatum :

    01.10.2024




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Destination and time-series inference of moving objects via conditionally Markov process

    Lee, Seokwon / Shin, Hyo-Sang | Springer Verlag | 2024

    Freier Zugriff



    Origin-destination matrix estimation with a conditionally binomial model

    Pirkko Kuusela / Ilkka Norros / Jorma Kilpi et al. | DOAJ | 2020

    Freier Zugriff

    Origin-destination matrix estimation with a conditionally binomial model

    Kuusela, Pirkko / Norros, Ilkka / Kilpi, Jorma et al. | Springer Verlag | 2020

    Freier Zugriff