Traffic flow is characterized by nonlinearity, volatility and randomness. To further improve the accuracy of short-term traffic flow prediction, a combined short-term traffic flow prediction model (CEEMDAN-CNN-LSTM) based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), convolutional neural network (CNN), and long short-term memory network (LSTM) was used. The model utilizes CEEMDAN to decompose the original traffic flow data into k smooth intrinsic mode functions (IMFs), inputs each modal function into the CNN-LSTM model for prediction respectively, and aggregates and accumulates the predicted values to obtain the short-term traffic flow prediction results. In the model, CNN is used to better capture the spatial characteristics of the traffic flow. The experimental results show that the combined prediction model has a high prediction accuracy compared to the ARIMA, LSTM, CNN-LSTM, CEEMDAN-LSTM, and EMD-CNN-LSTM models with reductions of 50.7%, 44.6%, 39.7%, 20.7%, and 9.7% in terms of MAE, respectively.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Short-term traffic flow prediction based on CEEMDAN-CNN-LSTM


    Beteiligte:
    Mikusova, Miroslava (Herausgeber:in) / Rui, Xiaofang (Autor:in) / Dong, Shi (Autor:in)

    Kongress:

    International Conference on Smart Transportation and City Engineering (STCE 2023) ; 2023 ; Chongqing, China


    Erschienen in:

    Proc. SPIE ; 13018 ; 130182C


    Erscheinungsdatum :

    14.02.2024





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    CEEMDAN-RF-LSTM-based traffic flow time sequence data prediction method and system

    ZHOU ZHAOBIN / WANG HUIQING / CHEN ZHIDE et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Short-term traffic flow prediction based on BAS-VMD-CEEMDAN and IWOA-RF

    Tian, Jia / Wang, Deyong / Fn, Yanyun et al. | IEEE | 2023


    Short-Term Traffic Flow Prediction: Using LSTM

    Poonia, Pregya / Jain, V. K. | IEEE | 2020


    Expressway Short-Term Traffic Flow Prediction Based on CNN-LSTM

    Ye, Ting / Zou, Fumin / Guo, Feng | Springer Verlag | 2024


    Short-term traffic flow prediction method based on improved LSTM

    GAN YONGHUA / JIANG XUEFENG / HU JINGSONG et al. | Europäisches Patentamt | 2021

    Freier Zugriff