In the rapidly evolving landscape of military technology, the demand for autonomous vehicles (AVs) is increasing in both public and private sectors. These autonomous systems promise many benefits including enhanced efficiency, safety, and flexibility. To meet this demand, development of autonomous vehicles that are resilient and versatile are essential to the transport and reconnaissance market. The sensory perception of autonomous vehicles of any kind is paramount to their ability to navigate and localize in their environment. Typically, the sensors used for localization and mapping include LIDAR, IMU, GPS, and radar. Each of these has inherent weaknesses that must be accounted for in a robust system. This paper presents quantified results of simulated perturbations, artificial noise models, and other sensor challenges on autonomous vehicle platforms. The research aims to establish a foundation for robust autonomous systems, accounting for sensor limitations, environmental noise, and defense against nefarious attacks.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Developing robust autonomous vehicles with ROS


    Beteiligte:
    Dudzik, Michael C. (Herausgeber:in) / Jameson, Stephen M. (Herausgeber:in) / Axenson, Theresa J. (Herausgeber:in) / Kangas, Dylan J. (Autor:in) / Salem, Mohamed (Autor:in) / Li, Kevin (Autor:in) / Ryynanen, Tyler (Autor:in) / Senczyszyn, Steven (Autor:in) / Pinar, Anthony J. (Autor:in) / Price, Steven R. (Autor:in)

    Kongress:

    Autonomous Systems: Sensors, Processing, and Security for Ground, Air, Sea, and Space Vehicles and Infrastructure 2024 ; 2024 ; National Harbor, Maryland, United States


    Erschienen in:

    Proc. SPIE ; 13052


    Erscheinungsdatum :

    07.06.2024





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Developing Technologies for Army Autonomous Land Vehicles

    R. D. Leighty / G. R. Lane | NTIS | 1985


    Towards Robust Situation Awareness in Autonomous Vehicles

    Nine, Julkar | DataCite | 2020

    Freier Zugriff

    Robust AI Driving Strategy for Autonomous Vehicles

    Nageshrao, Subramanya / Rahman, Yousaf / Ivanovic, Vladimir et al. | Springer Verlag | 2022


    Robust Safety for Autonomous Vehicles through Reconfigurable Networking

    Khalid Halba / Charif Mahmoudi / Edward Griffor | DOAJ | 2018

    Freier Zugriff