Analyzing hotspots of taxi passenger pick-up areas is advantageous for understanding the spatiotemporal distribution characteristics of urban residents' travel patterns. Based on sampled GPS data from taxis in Xi'an, this study explores the distribution patterns of taxi trips. It introduces the k-distance curve to enhance the DBSCAN spatial clustering algorithm for analyzing passenger pick-up and drop-off points. Through data mining, it identifies passenger hotspots, thereby providing information decision-making services for taxi operators and managers.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Exploration of spatiotemporal characteristics of taxi trips based on GPS data


    Beteiligte:
    Feng, Zhengang (Herausgeber:in) / Mikusova, Miroslava (Herausgeber:in) / Zhou, Kun (Autor:in)

    Kongress:

    International Conference on Smart Transportation and City Engineering (STCE 2024) ; 2024 ; Chongqing, China


    Erschienen in:

    Proc. SPIE ; 13575


    Erscheinungsdatum :

    28.04.2025





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Spatiotemporal Pattern Analysis of Taxi Trips in New York City

    Hochmair, Hartwig H. | Transportation Research Record | 2016




    Impacts of urban built environment on empty taxi trips using limited geolocation data

    Zhang, Wenbo / Ukkusuri, Satish V. / Lu, Jian John | Online Contents | 2016


    Impacts of urban built environment on empty taxi trips using limited geolocation data

    Zhang, Wenbo / Ukkusuri, Satish V. / Lu, Jian John | Online Contents | 2016