Characterization activities related to near-Earth asteroids (NEAs) provide several societal benefits. This work can serve as a precursor to a human exploration mission, it can facilitate the assessment of targets for resource extraction, and it can serve as preparation for intervention against the threat posed by an Earth impactor (EI). One objective of ongoing work at the University of North Dakota is to develop the capabilities required for NEA characterization. A CubeSatclass spacecraft will serve to demonstrate and test these required technologies on-orbit. This 1U CubeSat, which is compliant with NASA ELaNA CubeSat Launch Initiative requirements, will be comprised of standard subsystems (excluding propulsion) and a payload consisting of a visible light camera, a limited radio science package and a GPS receiver. The craft will also feature extensive onboard computing capabilities to allow it to process data to perform mosaicking, super-resolution and rudimentary image feature identification and analysis. This paper focuses on the onboard computing subsystem of this spacecraft which consists of a standard flight computer based on the AMTEL AT91SAM9G20 chipset and a supplemental processing unit based on several GumStix computeron- module (COM) units. The key design requirement: having an always-on primary processing unit and supplemental capabilities (including a digital signal processor) that can be powered on for use only when required and how the current design meets these requirements is reviewed. A detailed review of the spacecraft’s design and mission operations plan is presented. The numerous trades required to allow the requisite payload and onboard processing hardware to fit within the size and weight limitations posed by the 1U CubeSat form factor are discussed. Finally, the paper concludes with a review of the functionality provided by the spacecraft and the future capabilities that this functionality will facilitate.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    An onboard computing system design for a remote sensing cubesat


    Beteiligte:
    Straub, Jeremy (Autor:in)

    Kongress:

    Sensors and Systems for Space Applications VI ; 2013 ; Baltimore,Maryland,USA


    Erschienen in:

    Erscheinungsdatum :

    2013-05-21





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    An onboard computing system design for a remote sensing cubesat [8739-4]

    Straub, J. / SPIE (Society) | British Library Conference Proceedings | 2013


    Design and Simulation of an Articulated Onboard CubeSat Propulsion System

    Pal, Pritha / Gayen, Sneha / Kannan, B. T. | AIAA | 2020


    DESIGN AND SIMULATION OF AN ARTICULATED ONBOARD CUBESAT PROPULSION SYSTEM

    Pal, Pritha / Gayen, Sneha / Kannan, B. T. | TIBKAT | 2020


    Methodology for Developing Cubesat Remote Sensing Satellite

    Frolov, A. A. / Pronina, E. D. / Svirskaya, A. V. | IEEE | 2024


    Onboard Autonomy on the Intelligent Payload Experiment CubeSat Mission

    Chien, Steve / Doubleday, Joshua / Thompson, David R. et al. | AIAA | 2016