In order to solve the problem of small data set, this paper uses the invariance of distinguishing features between the simulated infrared image of maritime ship and real infrared image of maritime ship, studies a method of detecting infrared maritime ship target with no real data. At the same time, we propose an attribute adaptive learning strategy based on deep learning algorithm of yolov3. In the case of low data support, the detection capabilities of infrared maritime ship target have been improved.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A deep learning-based attribute adaptive infrared maritime ship target detection method


    Beteiligte:
    Wu, Yi (Autor:in) / Xu, Chuangang (Autor:in) / Li, Ting (Autor:in) / Yao, Keming (Autor:in) / Han, Bing (Autor:in)

    Kongress:

    AOPC 2020: Infrared Device and Infrared Technology ; 2020 ; Beijing,China


    Erschienen in:

    Proc. SPIE ; 11563 ; 115630F


    Erscheinungsdatum :

    05.11.2020





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Maritime Target Detection Method Based on Deep Learning

    Fu, Huixuan / Li, Yuan / Wang, Yuchao et al. | British Library Conference Proceedings | 2018


    Maritime Ship Target Detection Based on the YOLOv7 Model

    Guo, Qingmei / Wang, Zhongxun / Sun, Yanli et al. | IEEE | 2023


    Ship Target Detection Algorithm Based on Improved YOLOv3 for Maritime Image

    Dehai Chen / Shiru Sun / Zhijun Lei et al. | DOAJ | 2021

    Freier Zugriff

    Enhancing Maritime Safety with Deep Learning for Ship Identification

    Sripal, K. / Akshay, Kotra / Sai, Avula Shiva et al. | Springer Verlag | 2025


    Online learning for ship detection in maritime surveillance

    Wijnhoven, Rob / Rens, Kris van / Jaspers, Egbert G.T. et al. | Tema Archiv | 2010