According to the World Health Organization, the current global death toll from road traffic accidents is as high as 1.3 million annually. The main cause of road traffic accidents is poor road conditions, and potholes on roads are the most serious type of road diseases. Therefore, timely detection and treatment of road potholes is very necessary. This paper proposes a method based on the use of YOLOv7 deep learning model to detect potholes on the road. At the same time, CBAM attention mechanism and optimization of loss function are added on the basis of this method. Combined with the idea of transfer learning, the improved YOLOv7 network is trained. The final test results are significantly improved compared with other road potholes detection models. F1 score is 78%, Precision value can reach 85.81%, and mAP value can reach 83.02%.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Road pothole detection based on improved YOLOv7


    Beteiligte:
    Lv, Zhihan (Herausgeber:in) / Ahmad, Badrul Hisham bin (Herausgeber:in) / Zhang, Jianli (Autor:in) / Lei, Jiaofei (Autor:in)

    Kongress:

    Third International Conference on Image Processing and Intelligent Control (IPIC 2023) ; 2023 ; Kuala Lumpur, Malaysia


    Erschienen in:

    Proc. SPIE ; 12782


    Erscheinungsdatum :

    09.08.2023





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Road Pothole Detection System

    Lincy A. / Dhanarajan G. / Sanjay Kumar S. et al. | DOAJ | 2023

    Freier Zugriff

    Road Pothole Detection System Based on Stereo Vision

    Li, Yaqi / Papachristou, Christos / Weyer, Daniel | IEEE | 2018



    Pothole detection

    HOYE BRETT / KROTOSKY STEPHEN | Europäisches Patentamt | 2019

    Freier Zugriff

    Road Pothole Detection Based on AlexNet for Autonomous Driving

    Chen, Xu / Zhang, Jianing / Chen, Jiansong | IEEE | 2023