Michigan Tech’s unique climatology allows for relatively effortless collection of autonomous vehicle winter driving data featuring notionally severe winter weather. Over the past two years we have collected over twenty-five terabytes of winter driving data in suburban and rural settings. Year one focused on phenomenology of snowfall in the context of autonomous vehicle sensors, specifically LiDAR. Year two focused on more severe conditions, longer wavelength LiDAR, and first attempts at applying perception pipeline processing to the dataset. For year three we focus on simultaneous RADAR and LiDAR data collection in arctic-like conditions and LiDAR designs likely to be used in ADAS and production autonomous vehicles. We also introduce a point-wise labeled portion of our dataset to aid machine learning based autonomy and a snow removal filter to reduce clutter noise and improve existing object detection algorithms.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Winter adverse driving dataset (WADS): year three


    Beteiligte:
    Kurup, Akhil (Autor:in) / Bos, Jeremy (Autor:in)

    Kongress:

    Autonomous Systems: Sensors, Processing and Security for Ground, Air, Sea and Space Vehicles and Infrastructure 2022 ; 2022 ; Orlando,Florida,United States


    Erschienen in:

    Proc. SPIE ; 12115


    Erscheinungsdatum :

    06.06.2022





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Winter adverse driving dataset (WADS): year three

    Kurup, Akhil / Bos, Jeremy | British Library Conference Proceedings | 2022


    SID: Stereo Image Dataset for Autonomous Driving in Adverse Conditions

    El-Shair, Zaid A. / Abu-raddaha, Abdalmalek / Cofield, Aaron et al. | IEEE | 2024


    The Michigan Tech autonomous winter driving data set: year two

    Bos, Jeremy P. / Kurup, Akhil / Chopp, Derek et al. | British Library Conference Proceedings | 2021


    REHEARSE: adveRse wEatHEr datAset for sensoRy noiSe modEls

    Poledna, Yuri / Drechsler, Maikol Funk / Donzella, Valentina et al. | IEEE | 2024


    SEVERITY AWARE ADVERSE DRIVING NOTIFICATION

    UCAR SEYHAN / SHARMA SACHIN / LIU YONGKANG et al. | Europäisches Patentamt | 2024

    Freier Zugriff