The dense small objects detection is a challenging task in the scenario of UAV aerial surveillance. This paper proposes an improved YOLOv5 detection method for the dense small objects in high resolution images. To augment the dataset, a 20% overlap crop is used for the UAV aerial photography training set. In order to detect the tiny objects in the aerial photos of UAV, a tiny detection head is added on the basis of YOLOv5. The SPP and CBAM modules are introduced in the head of the model, SPP for feature fusion at different scales and CBAM for adding attention to spatial and channel dimensions. Multiple experiments are conducted on the VisDrone 2019 dataset, the results show that the mAP of 12 classes detected by the model is 30.4%, and 3.1% higher than the original YOLOv5.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    An improved YOLOv5 method for small object detection in high resolution images


    Beteiligte:
    Ran, Dongni (Autor:in) / Xiong, Xuhui (Autor:in) / Gao, Lujunjie (Autor:in)

    Kongress:

    International Conference on Mechatronics Engineering and Artificial Intelligence (MEAI 2022) ; 2022 ; Changsha,China


    Erschienen in:

    Proc. SPIE ; 12596


    Erscheinungsdatum :

    28.02.2023





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Research on Object Detection and Recognition Method for UAV Aerial Images Based on Improved YOLOv5

    Heng Zhang / Faming Shao / Xiaohui He et al. | DOAJ | 2023

    Freier Zugriff

    Remote sensing aircraft small object detection algorithm based on YOLOv5

    Qiu, Yijuan / Xue, Jiefeng / Zhang, Jie et al. | SPIE | 2024


    STD-Yolov5: a ship-type detection model based on improved Yolov5

    Ning, Yue / Zhao, Lining / Zhang, Can et al. | Taylor & Francis Verlag | 2024


    An Improved YOLOv5-Based Small Target Detection Method for UAV Aerial Image

    Li, Ruoyu / Gao, Yang / Zhang, Ruixing | Springer Verlag | 2023


    Research on Improved YOLOv5 Vehicle Target Detection Algorithm in Aerial Images

    Xue Yang / Jihong Xiu / Xiaojia Liu | DOAJ | 2024

    Freier Zugriff