Due to the high hyperspectral data volume, high dimensionality and the data itself having great redundancy, the accuracy of Sequential Maximum Angle Convex Cone (SMACC) endmember extraction algorithm is low. In view of this, we proposed an endmember extraction algorithm based on PCA-SMACC. First , it uses principal component analysis(PCA)algorithm to achieve the purpose of hyperspectral data dimensionality reduction. The method removes the data redundancy while maintains the validity of the data. Then it uses SMACC endmember extraction algorithm on the resulting principal component images. The experimental results show that PCA-SMACC algorithm can compensate for the lack of traditional algorithms. Compared with PPI and SMACC algorithms, PCA-SMACC has improved to some extent in the extraction accuracy and speed.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Endmember extraction algorithm for hyperspectral image based on PCA-SMACC


    Beteiligte:
    Liu, Chang (Autor:in) / Li, Junwei (Autor:in) / Wang, Guangping (Autor:in)

    Kongress:

    Selected Papers from Conferences of the Photoelectronic Technology Committee of the Chinese Society of Astronautics: Optical Imaging, Remote Sensing, and Laser-Matter Interaction 2013 ; 2013 ; SuZhou,China


    Erschienen in:

    Erscheinungsdatum :

    21.02.2014





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch