Traffic volume surveys are a key factor in determining the state of road traffic and are a necessary basis for activities such as traffic planning, road construction, traffic control and management and engineering economic analysis. Most traffic volume surveys count vehicles separately by type, so accurate identification of vehicle types is particularly important. This paper is based on traffic volume survey data from eight detection methods for different vehicle types with separate detection counts. Statistical and correlation analyses were carried out separately, culminating in a multiple linear regression model, which yielded specific relationships between the effects of the different models when performing the tests.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Analysis of the accuracy of vehicle detection based on multiple linear regression


    Beteiligte:
    Chen, Mingqin (Autor:in) / Wang, Hengkun (Autor:in) / Zhang, Shuao (Autor:in) / Wang, Jiangfeng (Autor:in)

    Kongress:

    International Conference on Smart Transportation and City Engineering (STCE 2022) ; 2022 ; Chongqing,China


    Erschienen in:

    Proc. SPIE ; 12460


    Erscheinungsdatum :

    22.12.2022





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Analysis of the accuracy of vehicle detection based on multiple linear regression

    Chen, Mingqin / Wang, Hengkun / Zhang, Shuao et al. | British Library Conference Proceedings | 2022


    Multiple linear regression analysis

    Edwards, T. R. | NTRS | 1980


    Forecasting Commercial Vehicle Demand Using a Multiple Linear Regression Model

    Aungkulanon, Pasura / Hirunwat, Anucha / Atthirawong, Walailak et al. | IEEE | 2023


    Multiple Linear Regression Analysis of Canada’s Freight Transportation Framework

    Jamileh Yousefi / Sahand Ashtab / Amirali Yasaei et al. | DOAJ | 2023

    Freier Zugriff