Autonomous vehicles improve the safety and efficiency of vehicles in complex traffic scenarios through autonomous decision-making intelligence technology. To address the requirements of the self-driving vehicle lane change scenario for the accuracy of vehicle lane change trajectory prediction, in this paper, we propose a lane change trajectory prediction method for self-driving vehicles based on inverse reinforcement learning. We model the inverse reinforcement learning process through a maximum entropy mechanism to learn the optimal reward function that infers the potential end targets during the vehicle lane change. This reward model is used to construct the optimal policy that can be sampled for planning in the grid world. Conditioned on the sequence of state actions sampled by this maximum entropy policy, we generate vehicle lane change prediction trajectories. We conduct training experiments on lane change scenario data from the publicly available nuScenes dataset for autonomous driving, which shows that our method can meet the vehicle lane change requirements in real scenarios and validate the accuracy and reasonableness of the lane change trajectories.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Research on trajectory prediction of vehicle lane change for autonomous driving based on inverse reinforcement learning


    Beteiligte:
    Ghanizadeh, Ali Reza (Herausgeber:in) / Jia, Hongfei (Herausgeber:in) / Zhan, Ming (Autor:in) / Fan, Jingjing (Autor:in) / Jin, Linhao (Autor:in)

    Kongress:

    Seventh International Conference on Traffic Engineering and Transportation System (ICTETS 2023) ; 2023 ; Dalian, China


    Erschienen in:

    Proc. SPIE ; 13064


    Erscheinungsdatum :

    20.02.2024





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Lane Change Prediction for Autonomous Driving With Transferred Trajectory Interaction

    Lu, Yuhuan / Xu, Pengpeng / Jiang, Xinyu et al. | IEEE | 2025



    REINFORCEMENT LEARNING FOR AUTONOMOUS LANE CHANGE

    SHI ZHAN / JIANG YIFEI / LI ANG | Europäisches Patentamt | 2024

    Freier Zugriff

    Neural Network Based Lane Change Trajectory Prediction in Autonomous Vehicles

    Tomar, Ranjeet Singh / Verma, Shekhar | Tema Archiv | 2011